Refactor to C/S architecture.

Refactor: the old design works badly in multiprocessing. Now the framework is migrated to a Client-Server pattern to compatible for multiprocessing usage, such as vLLM.
This commit is contained in:
2025-09-28 11:02:14 +08:00
parent 8d1551f2f6
commit 25a356796b

View File

@ -1,53 +1,68 @@
""" """
Asynchronous, batched, and schema-evolving Parquet logger. Process-safe, asynchronous, batched, and schema-evolving Parquet logger.
This module provides the `DataLogger`, a high-performance logger for structured This module provides the `DataLogger`, a high-performance logger for structured
data, designed for applications like machine learning experiments, simulations, data, redesigned with a client-server architecture to be fully compatible with
or any scenario requiring efficient serialization of row-based data. multi-process applications (e.g., using `multiprocessing` or libraries like vLLM).
Key Features: Key Architectural Features:
- **Unified Interface**: Log data via a simple `DataLogger.log({"key": "value"})` call. - **Client-Server Model**: A single, dedicated server process manages all file I/O,
- **Asynchronous & Batched**: A dedicated background thread handles I/O, preventing race conditions and data loss from child processes.
batching rows to minimize disk writes and reduce application latency. - **Process-Safe**: All processes (main, children) act as clients, sending data
- **Schema Evolution**: Automatically adapts the Parquet schema if new data fields via a managed, shared queue, ensuring centralized and ordered logging.
are introduced, rewriting the file to maintain a consistent structure. - **Lazy Initialization & Automatic Management**: The server process is transparently
- **Singleton Pattern**: A global singleton instance is managed automatically, started on the first log call and is gracefully shut down on program exit via
providing a convenient, fire-and-forget logging experience. `atexit`, requiring no manual management from the user.
- **Unified Interface**: Log data from any process via the simple and consistent
`DataLogger.log({"key": "value"})` call.
- **Asynchronous & Batched**: The server process handles I/O asynchronously from the
clients, batching rows to minimize disk writes and reduce application latency.
- **Schema Evolution**: Reuses the robust logic to automatically adapt the Parquet
schema if new data fields are introduced, rewriting the file to maintain a
consistent structure.
- **Type Handling**: Natively handles Python primitives, NumPy arrays, and PyTorch - **Type Handling**: Natively handles Python primitives, NumPy arrays, and PyTorch
tensors, converting them to Parquet-compatible formats. tensors.
- **Robust & Thread-Safe**: Designed for use in multi-threaded environments.
Basic Usage: Basic Usage:
------------- -------------
.. code-block:: python .. code-block:: python
from logger.data_logger import DataLogger from data_logger import DataLogger
import multiprocessing
# The first call creates and configures the singleton logger. # Optional: Configure the logger at the start of your application.
# A timestamped filename is generated by default. # If not called, defaults will be used on the first .log() call.
DataLogger.log({"step": 0, "loss": 10.5, "accuracy": 0.5}) DataLogger.initialize("my_experiment.parquet")
DataLogger.log({"step": 1, "loss": 9.8, "accuracy": 0.55})
# For the singleton, data is automatically flushed and saved on program exit. def worker_function(worker_id):
# No explicit `close()` call is required for this simple case. for i in range(5):
# Log from a child process. It's that simple.
DataLogger.log({"worker_id": worker_id, "step": i, "value": i * 100})
time.sleep(0.1)
Advanced Usage (Instance-Based): # All calls to DataLogger.log() from any process will be sent
--------------------------------- # to the central logging server.
.. code-block:: python DataLogger.log({"main_process_event": "starting workers"})
from logger.data_logger import DataLogger, LoggerConfig processes = [multiprocessing.Process(target=worker_function, args=(i,)) for i in range(3)]
for p in processes:
p.start()
for p in processes:
p.join()
config = LoggerConfig(batch_size=512, flush_interval=5.0) DataLogger.log({"main_process_event": "workers finished"})
with DataLogger("my_experiment.parquet", config=config) as logger:
for i in range(1000): # Data is automatically flushed and the server is shut down when the main
logger.submit({"value": i}) # program exits. For explicit control, you can call:
# The `with` statement ensures flush and close on exit. # DataLogger.close()
""" """
from __future__ import annotations from __future__ import annotations
import datetime
import atexit import atexit
import datetime
import multiprocessing
import multiprocessing.synchronize
import os import os
import queue import queue
import threading import threading
@ -57,35 +72,33 @@ import typing as t
from dataclasses import dataclass from dataclasses import dataclass
from pathlib import Path from pathlib import Path
# Third-party libraries are imported with runtime checks to provide clear # Third-party libraries are imported with runtime checks
# error messages if they are not installed.
try: try:
import numpy as np import numpy as np
except ImportError: except ImportError:
np = None # type: ignore np = None
try: try:
import pandas as pd import pandas as pd
except ImportError: except ImportError:
raise ImportError( raise ImportError("pandas is required. Install with `pip install pandas`.")
"pandas is required for DataLogger. Install with `pip install pandas`."
)
try: try:
import pyarrow as pa import pyarrow as pa
import pyarrow.parquet as pq import pyarrow.parquet as pq
except ImportError: except ImportError:
raise ImportError( raise ImportError("pyarrow is required. Install with `pip install pyarrow`.")
"pyarrow is required for DataLogger. Install with `pip install pyarrow`."
)
try: try:
import torch import torch
except ImportError: except ImportError:
torch = None # type: ignore torch = None
# Type alias for a single row of data. # --- Type Definitions and Constants ---
Row = t.Dict[str, t.Any] Row = t.Dict[str, t.Any]
# Special command objects to be sent through the queue, distinct from data rows (dicts)
_FLUSH_COMMAND = "__FLUSH__"
_SHUTDOWN_COMMAND = "__SHUTDOWN__"
@dataclass @dataclass
@ -93,312 +106,123 @@ class LoggerConfig:
"""Configuration for the DataLogger's writer behavior.""" """Configuration for the DataLogger's writer behavior."""
batch_size: int = 1024 batch_size: int = 1024
"""Number of rows to accumulate before writing a batch to the Parquet file."""
flush_interval: float = 1.0 flush_interval: float = 1.0
"""Maximum time in seconds to wait before flushing the buffer, even if
`batch_size` is not reached."""
parquet_compression: str = "snappy" parquet_compression: str = "snappy"
"""Compression codec to use for the Parquet file.
Common options: 'snappy', 'gzip', 'brotli', 'none'."""
allow_schema_rewrite: bool = True allow_schema_rewrite: bool = True
"""If True, the logger will automatically rewrite the entire Parquet file to
accommodate new columns. If False, it will raise an error."""
class DataLogger: class DataLoggerServer(multiprocessing.Process):
""" """
An asynchronous, batched logger that writes data to a Parquet file. The server process responsible for all file I/O operations.
This class manages a background thread to handle file I/O, allowing the This process runs a loop that consumes data from a shared queue, batches it,
calling application to log data with minimal blocking. It supports schema and writes to a Parquet file. It is the single source of truth for the log file,
evolution, making it robust to changes in data structure over time. ensuring that writes are serialized and schema evolution is handled correctly.
It is designed to be managed by the `DataLogger` facade and not instantiated directly.
""" """
_singleton: t.Optional["DataLogger"] = None
_singleton_lock = threading.Lock()
# --- Public API ---
@classmethod
def get_instance(
cls,
path: t.Optional[t.Union[str, Path]] = None,
config: t.Optional[LoggerConfig] = None,
) -> "DataLogger":
"""
Get or create the global singleton instance of the DataLogger.
The first time this method is called, it creates a new `DataLogger`
instance and registers a cleanup function via `atexit` to ensure
`close()` is called automatically upon program termination.
Subsequent calls will ignore the arguments and return the existing
instance.
Args:
path: The file path for the log file. If None, a timestamped
filename like 'log_YYYYMMDD-HHMMSS.parquet' is created in the
current working directory.
config: A `LoggerConfig` object to configure the writer's behavior.
If None, default settings are used.
Returns:
The singleton `DataLogger` instance.
"""
if cls._singleton is None:
with cls._singleton_lock:
if cls._singleton is None:
# Create the singleton instance.
instance = cls(path, config)
# Register its close method to be called at program exit.
# This ensures data is saved even if the user forgets to call close().
atexit.register(instance.close)
cls._singleton = instance
return cls._singleton
@classmethod
def log(cls, row: Row) -> None:
"""
Log a data row using the singleton instance.
This is a convenience method that lazily initializes the singleton on
its first call. The operation is non-blocking; the data is placed in
an internal queue to be processed by the background writer thread.
Args:
row: A dictionary representing a single row of data, where keys
are column names and values are the data points.
"""
instance = cls.get_instance()
instance.submit(row)
def __init__( def __init__(
self, self,
path: t.Optional[t.Union[str, Path]] = None, log_queue: multiprocessing.Queue,
config: t.Optional[LoggerConfig] = None, path: Path,
config: LoggerConfig,
flush_event: multiprocessing.synchronize.Event,
): ):
""" super().__init__(daemon=True, name=f"DataLoggerServer-{path.name}")
Initialize a DataLogger instance. self._queue = log_queue
self.path = path
Args: self._config = config
path: The file path for the log file. If None, a timestamped self._flush_event = flush_event
filename is automatically generated.
config: A `LoggerConfig` object. If None, default settings are used.
"""
self.path = self._resolve_path(path)
self._config = config or LoggerConfig()
# Internal state for the writer thread
self._queue: queue.Queue[t.Optional[Row]] = queue.Queue()
self._stop_event = threading.Event()
self._flush_event = threading.Event()
self._writer_thread: t.Optional[threading.Thread] = None
self._writer_lock = threading.RLock() # Protects writer and schema
# Parquet-specific state, managed exclusively by the writer thread
self._parquet_writer: t.Optional[pq.ParquetWriter] = None
self._schema: t.Optional[pa.Schema] = None
self._buffer: t.List[Row] = [] self._buffer: t.List[Row] = []
self._start_writer_thread() def run(self) -> None:
"""The main loop of the server process."""
def submit(self, row: Row) -> None:
"""
Submit a data row to be written asynchronously by the logger instance.
Args:
row: A dictionary representing a single row of data.
Raises:
TypeError: If the provided row is not a dictionary.
RuntimeError: If the logger has already been closed.
"""
if self._stop_event.is_set():
raise RuntimeError("Logger has been closed and cannot accept new data.")
if not isinstance(row, dict):
raise TypeError(f"Expected a dict for a row, but got {type(row)}.")
normalized_row = self._normalize_row(row)
self._queue.put(normalized_row)
def flush(self, timeout: float = 10.0) -> None:
"""
Block until all currently queued and buffered data is written to disk.
Args:
timeout: Maximum time in seconds to wait for the flush to complete.
"""
if self._writer_thread is None or not self._writer_thread.is_alive():
return
self._flush_event.clear()
self._queue.put(None) # Sentinel to trigger a flush
self._flush_event.wait(timeout)
def close(self, timeout: float = 10.0) -> None:
"""
Flush all remaining data and shut down the background writer thread.
This method is idempotent and thread-safe. It is designed to be
called explicitly, via a `with` statement, or automatically at program
exit.
Args:
timeout: Maximum time in seconds to wait for the writer thread
to finish.
"""
if self._stop_event.is_set():
return
self._stop_event.set()
self._queue.put(None) # Wake up the writer thread if it's blocking.
# Do not join the writer thread from itself, which would cause a deadlock.
if self._writer_thread and threading.current_thread() != self._writer_thread:
self._writer_thread.join(timeout)
def __enter__(self) -> "DataLogger":
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Ensures the logger is closed upon exiting a `with` block."""
self.close()
def __del__(self):
"""Ensures data is flushed when the logger object is destroyed."""
self.close()
# --- Internal Methods ---
def _resolve_path(self, path: t.Optional[t.Union[str, Path]]) -> Path:
"""Determine the final output path for the log file."""
if path is None:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
filename = f"log_{timestamp}.parquet"
return Path.cwd() / filename
resolved_path = Path(path)
if resolved_path.suffix == "":
resolved_path = resolved_path.with_suffix(".parquet")
return resolved_path
def _start_writer_thread(self) -> None:
"""Initialize and start the background writer thread."""
if self._writer_thread is not None:
return
thread_name = f"DataLoggerWriter-{self.path.name}"
self._writer_thread = threading.Thread(
target=self._writer_loop, name=thread_name, daemon=True
)
self._writer_thread.start()
def _writer_loop(self) -> None:
"""
The main loop for the background writer thread.
This loop continuously pulls data from the queue, batches it, and
writes it to the Parquet file. It handles flush signals, stop events,
and schema evolution.
"""
try: try:
while not self._stop_event.is_set(): should_stop = False
while not should_stop:
try: try:
# Block until an item is available or the flush interval times out. # Block until an item is available or the flush interval times out.
item = self._queue.get(timeout=self._config.flush_interval) item = self._queue.get(timeout=self._config.flush_interval)
if isinstance(item, dict):
self._buffer.append(self._normalize_row(item))
elif item == _FLUSH_COMMAND:
self._write_buffer_if_needed(force=True)
self._flush_event.set() # Signal completion
elif item == _SHUTDOWN_COMMAND:
should_stop = True
self._drain_and_write()
except queue.Empty: except queue.Empty:
# Timeout occurred, treat as a periodic flush signal. # Timeout occurred, treat as a periodic flush signal.
item = None self._write_buffer_if_needed(force=False)
if item is not None: # Final write upon graceful shutdown
self._buffer.append(item) self._write_buffer_if_needed(force=True)
except Exception as e:
print(f"FATAL: DataLogger server process crashed: {e}", flush=True)
traceback.print_exc()
def _write_buffer_if_needed(self, force: bool = False) -> None:
"""
Determines if the buffer should be written to disk and triggers the write.
Args:
force: If True, writes the buffer regardless of size.
Used for flush commands, timeouts, and shutdown.
"""
buffer_size = len(self._buffer) buffer_size = len(self._buffer)
is_flush_signal = item is None
is_batch_full = buffer_size >= self._config.batch_size is_batch_full = buffer_size >= self._config.batch_size
is_shutting_down = self._stop_event.is_set()
if self._buffer and ( if self._buffer and (force or is_batch_full):
is_flush_signal or is_batch_full or is_shutting_down
):
self._write_batch(self._buffer) self._write_batch(self._buffer)
self._buffer.clear() self._buffer.clear()
if is_flush_signal: def _drain_and_write(self) -> None:
self._flush_event.set() # Signal that a flush completed
# Final drain of the queue and buffer after the stop event is set.
self._drain_remaining()
except Exception as e:
print(f"FATAL: DataLogger writer thread crashed: {e}", flush=True)
traceback.print_exc()
finally:
# This block ensures that the Parquet writer is always closed
# when the writer thread exits, for any reason.
with self._writer_lock:
if self._parquet_writer:
try:
self._parquet_writer.close()
except Exception as e:
print(
f"ERROR: Exception while closing Parquet writer: {e}",
flush=True,
)
self._parquet_writer = None
def _drain_remaining(self) -> None:
"""Process all remaining items in the queue and buffer during shutdown.""" """Process all remaining items in the queue and buffer during shutdown."""
while True: while True:
try: try:
item = self._queue.get_nowait() item = self._queue.get_nowait()
if item: if isinstance(item, dict):
self._buffer.append(item) self._buffer.append(self._normalize_row(item))
except queue.Empty: except queue.Empty:
break break
if self._buffer: self._write_buffer_if_needed(force=True)
self._write_batch(self._buffer)
self._buffer.clear()
def _write_batch(self, rows: t.List[Row]) -> None: def _write_batch(self, rows: t.List[Row]) -> None:
""" """
Convert a list of rows into a Parquet table and write it to the file. Converts rows to a Parquet table and writes it, handling schema evolution.
This method handles schema creation, validation, and evolution. This method encapsulates the core file I/O logic. It reads the existing
It is always executed within the writer thread. file, merges data, and atomically overwrites it. This strategy is robust
for schema changes, although it has performance implications for very
large files. This logic is preserved from the original implementation.
""" """
if not rows: if not rows:
return return
try: try:
with self._writer_lock:
df = pd.DataFrame(rows) df = pd.DataFrame(rows)
# Ensure a consistent column order for schema stability. # Ensure a consistent column order for schema stability.
df = df.reindex(sorted(df.columns), axis=1) df = df.reindex(sorted(df.columns), axis=1)
new_table = pa.Table.from_pandas(df, preserve_index=False) new_table = pa.Table.from_pandas(df, preserve_index=False)
combined_table: pa.Table
if self.path.exists(): if self.path.exists():
# File exists, need to append or evolve schema
existing_table = pq.read_table(self.path) existing_table = pq.read_table(self.path)
existing_schema = existing_table.schema if existing_table.schema.equals(new_table.schema):
if existing_schema.equals(new_table.schema):
# Schema matches, append the data
combined_table = pa.concat_tables([existing_table, new_table]) combined_table = pa.concat_tables([existing_table, new_table])
else: else:
# Schema evolution needed # Schema evolution is needed
if not self._config.allow_schema_rewrite: if not self._config.allow_schema_rewrite:
raise RuntimeError( raise RuntimeError(
"Schema mismatch detected, and rewriting is disabled." "Schema mismatch detected, and rewriting is disabled."
f"Existing schema: {existing_schema}, New schema: {new_table.schema}"
) )
print( print(
f"INFO: Schema evolution detected. Rewriting {self.path}...", f"INFO: Schema evolution detected. Rewriting {self.path}...",
flush=True, flush=True,
) )
# Combine with schema evolution
combined_df = pd.concat( combined_df = pd.concat(
[existing_table.to_pandas(), new_table.to_pandas()], [existing_table.to_pandas(), new_table.to_pandas()],
ignore_index=True, ignore_index=True,
@ -411,11 +235,11 @@ class DataLogger:
combined_df, preserve_index=False combined_df, preserve_index=False
) )
else: else:
# New file # This is a new file
self.path.parent.mkdir(parents=True, exist_ok=True) self.path.parent.mkdir(parents=True, exist_ok=True)
combined_table = new_table combined_table = new_table
# Write the combined table atomically # Write atomically by using a temporary file
temp_path = self.path.with_suffix(f"{self.path.suffix}.tmp") temp_path = self.path.with_suffix(f"{self.path.suffix}.tmp")
pq.write_table( pq.write_table(
combined_table, combined_table,
@ -424,70 +248,186 @@ class DataLogger:
) )
os.replace(temp_path, self.path) os.replace(temp_path, self.path)
# Update our schema tracking
self._schema = combined_table.schema
except Exception as e: except Exception as e:
print(f"ERROR: Failed to write batch to {self.path}: {e}", flush=True) print(f"ERROR: Failed to write batch to {self.path}: {e}", flush=True)
traceback.print_exc() traceback.print_exc()
def _rewrite_with_new_schema(self, new_table: pa.Table) -> None:
"""
Rewrite the entire Parquet file to accommodate an evolved schema.
This is a potentially expensive operation as it reads the entire
existing file into memory.
Args:
new_table: The new batch of data with a different schema.
"""
print(f"INFO: Schema evolution detected. Rewriting {self.path}...", flush=True)
# Close the current writer before reading the file.
if self._parquet_writer:
self._parquet_writer.close()
# Read existing data, combine with new data, and create a unified table.
existing_table = pq.read_table(self.path)
combined_df = pd.concat(
[existing_table.to_pandas(), new_table.to_pandas()],
ignore_index=True,
sort=False,
)
# Re-sort columns for the new unified schema.
combined_df = combined_df.reindex(sorted(combined_df.columns), axis=1)
final_table = pa.Table.from_pandas(combined_df, preserve_index=False)
self._schema = final_table.schema
# Atomically replace the old file with the new one.
temp_path = self.path.with_suffix(f"{self.path.suffix}.tmp")
pq.write_table(
final_table, temp_path, compression=self._config.parquet_compression
)
os.replace(temp_path, self.path)
# Re-initialize the writer with the new schema for subsequent writes.
self._parquet_writer = pq.ParquetWriter(
self.path, self._schema, compression=self._config.parquet_compression
)
def _normalize_row(self, row: Row) -> Row: def _normalize_row(self, row: Row) -> Row:
""" """Sanitize all values in a row for Parquet compatibility."""
Sanitize all values in a row for Parquet compatibility.
"""
return {key: self._normalize_value(value) for key, value in row.items()} return {key: self._normalize_value(value) for key, value in row.items()}
def _normalize_value(self, value: t.Any) -> t.Any: def _normalize_value(self, value: t.Any) -> t.Any:
""" """Convert a single value to a Parquet-friendly format."""
Convert a single value to a Parquet-friendly format.
- NumPy arrays and Torch tensors are converted to nested lists.
- Other types are passed through for pandas to handle.
"""
if value is None: if value is None:
return None return None
if np and isinstance(value, np.ndarray): if np and isinstance(value, np.ndarray):
return value.tolist() return value.tolist()
if torch and isinstance(value, torch.Tensor): if torch and isinstance(value, torch.Tensor):
return value.detach().cpu().numpy().tolist() return value.detach().cpu().numpy().tolist()
# return value.detach().cpu().numpy()
return value return value
multiprocessing.Event()
class DataLogger:
"""
A process-safe facade for logging structured data to a Parquet file.
This class manages a singleton server process in the background and provides
a simple, unified API (`.log()`) for all processes in an application.
"""
_manager: t.ClassVar[t.Optional[multiprocessing.managers.SyncManager]] = None
_log_queue: t.ClassVar[t.Optional[multiprocessing.Queue]] = None
_server_process: t.ClassVar[t.Optional[DataLoggerServer]] = None
_flush_event: t.ClassVar[t.Optional[multiprocessing.synchronize.Event]] = None
_lock = threading.Lock() # Use a thread-lock for initializing class-level resources
@classmethod
def initialize(
cls,
path: t.Optional[t.Union[str, Path]] = None,
config: t.Optional[LoggerConfig] = None,
) -> None:
"""
Explicitly initialize and start the logging server.
This is optional. If not called, the server will be started automatically
with default settings upon the first call to `log()`.
Args:
path: Path to the log file. If None, a timestamped name is generated.
config: Configuration for the logger's behavior.
"""
with cls._lock:
if cls._server_process is not None:
print(
"WARNING: DataLogger already initialized. Ignoring subsequent call.",
flush=True,
)
return
cls._start_server(path, config)
@classmethod
def log(cls, row: Row) -> None:
"""
Log a data row from any process.
The first call to this method will automatically start the background
logging server if it hasn't been started already. The operation is
non-blocking; the data is placed in a process-safe queue.
Args:
row: A dictionary representing a single row of data.
Raises:
TypeError: If the provided row is not a dictionary.
"""
if not isinstance(row, dict):
raise TypeError(f"Expected a dict for a row, but got {type(row)}.")
with cls._lock:
if cls._server_process is None:
# Lazy initialization with default parameters
cls._start_server()
if cls._log_queue:
try:
cls._log_queue.put(row)
except Exception as e:
# Can happen if the manager process dies unexpectedly
print(f"ERROR: Failed to queue log message: {e}", flush=True)
@classmethod
def flush(cls, timeout: float = 10.0) -> None:
"""
Block until all currently queued data is written to disk.
Args:
timeout: Maximum time in seconds to wait for the flush to complete.
"""
if (
cls._server_process is None
or cls._log_queue is None
or cls._flush_event is None
):
return
cls._flush_event.clear()
cls._log_queue.put(_FLUSH_COMMAND)
cls._flush_event.wait(timeout)
@classmethod
def close(cls, timeout: float = 10.0) -> None:
"""
Flush all data and gracefully shut down the logging server.
This is automatically registered with `atexit` and usually does not
need to be called manually.
Args:
timeout: Maximum time to wait for the server process to join.
"""
with cls._lock:
if cls._server_process is None or not cls._server_process.is_alive():
return
print("INFO: Shutting down DataLogger server...", flush=True)
if cls._log_queue:
cls._log_queue.put(_SHUTDOWN_COMMAND)
cls._server_process.join(timeout)
if cls._server_process.is_alive():
print(
"WARNING: DataLogger server did not shut down cleanly. Terminating.",
flush=True,
)
cls._server_process.terminate()
if cls._manager:
cls._manager.shutdown()
cls._server_process = None
cls._log_queue = None
cls._manager = None
print("INFO: DataLogger shutdown complete.", flush=True)
@classmethod
def _start_server(
cls,
path: t.Optional[t.Union[str, Path]] = None,
config: t.Optional[LoggerConfig] = None,
) -> None:
"""Internal method to create and start the server process. Must be called within a lock."""
resolved_path = cls._resolve_path(path)
print(f"INFO: Starting DataLogger server for -> {resolved_path}", flush=True)
# A manager handles shared state between processes
cls._manager = multiprocessing.Manager()
cls._log_queue = cls._manager.Queue()
cls._flush_event = cls._manager.Event()
cls._server_process = DataLoggerServer(
log_queue=cls._log_queue,
path=resolved_path,
config=config or LoggerConfig(),
flush_event=cls._flush_event,
)
cls._server_process.start()
# Register the cleanup function to be called on program exit
atexit.register(cls.close)
@staticmethod
def _resolve_path(path: t.Optional[t.Union[str, Path]]) -> Path:
"""Determine the final output path for the log file."""
if path is None:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
filename = f"log_{timestamp}.parquet"
return Path.cwd() / filename
resolved_path = Path(path)
if resolved_path.suffix == "":
resolved_path = resolved_path.with_suffix(".parquet")
return resolved_path