# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only OLMoE model compatible with HuggingFace weights. This file is origin from vllm/model_executor/models/olmoe.py """ from collections.abc import Iterable from datetime import datetime from functools import partial from typing import Any, Optional, Union import torch from torch import nn from transformers import OlmoeConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_gather) from vllm.distributed.utils import split_tensor_along_last_dim from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors from vllm.model_executor.models.interfaces import SupportsPP from vllm.model_executor.models.utils import (AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) from utils import DataLogger as dlog logger = init_logger(__name__) class OlmoeMoE(nn.Module): """A tensor-parallel MoE implementation for Olmoe that shards each expert across all ranks. Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks. """ def __init__(self, num_experts: int, top_k: int, hidden_size: int, intermediate_size: int, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, tp_size: Optional[int] = None, prefix: str = ""): super().__init__() self.hidden_size = hidden_size # Gate always runs at half / full precision for now. self.gate = ReplicatedLinear(hidden_size, num_experts, bias=False, quant_config=None) self.experts = FusedMoE(num_experts=num_experts, top_k=top_k, hidden_size=hidden_size, intermediate_size=intermediate_size, reduce_results=True, renormalize=False, quant_config=quant_config, tp_size=tp_size, prefix=f"{prefix}.experts") def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # NOTE: hidden_states can have either 1D or 2D shape. orig_shape = hidden_states.shape hidden_dim = hidden_states.shape[-1] hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) dlog.log({ "_time": datetime.now(), "router_logits": router_logits.cpu().float().numpy(), "layer": self.layer_idx, }) final_hidden_states = self.experts(hidden_states=hidden_states, router_logits=router_logits) return final_hidden_states.view(orig_shape) def add_logging_metrics(self, layer_idx: int): self.layer_idx = layer_idx class OlmoeAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, rope_theta: float = 10000, rope_scaling: Optional[dict[str, Any]] = None, max_position_embeddings: int = 4096, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.tp_size = tp_size self.tp_rank = get_tensor_model_parallel_rank() self.q_norm = RMSNorm(self.total_num_heads * self.head_dim, eps=1e-5) self.k_norm = RMSNorm(self.total_num_kv_heads * self.head_dim, eps=1e-5) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=True, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") def _apply_qk_norm(self, q: torch.Tensor, k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: if self.tp_size > 1: q = tensor_model_parallel_all_gather(q.contiguous()) k = tensor_model_parallel_all_gather(k.contiguous()) q = self.q_norm(q) k = self.k_norm(k) if self.tp_size > 1: splitter = partial(split_tensor_along_last_dim, num_partitions=self.tp_size) q = splitter(q)[self.tp_rank] k = splitter(k)[self.tp_rank] return q, k def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self._apply_qk_norm(q, k) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) return output class OlmoeDecoderLayer(nn.Module): def __init__( self, config: OlmoeConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) max_position_embeddings = getattr(config, "max_position_embeddings", 4096) self.self_attn = OlmoeAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) # Extract layer_idx from prefix self.layer_idx = None try: # Prefix format: "model.layers.7" parts = prefix.split('.') if len(parts) >= 3 and parts[2].isdigit(): self.layer_idx = int(parts[2]) except ValueError: pass self.mlp = OlmoeMoE( num_experts=config.num_experts, top_k=config.num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm(config.hidden_size, eps=1e-5) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=1e-5) self.mlp.add_logging_metrics(layer_idx=self.layer_idx) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_torch_compile class OlmoeModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.vocab_size = config.vocab_size self.config = config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: OlmoeDecoderLayer( config, cache_config, quant_config, prefix=prefix), prefix=f"{prefix}.layers") self.norm = RMSNorm(config.hidden_size, eps=1e-5) self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors], inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in self.layers[self.start_layer:self.end_layer]: hidden_states, residual = layer( positions, hidden_states, residual, ) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, "residual": residual }) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) return FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.num_experts) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() expert_params_mapping = self.get_expert_mapping() for name, loaded_weight in weights: for (param_name, weight_name, shard_id) in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if "mlp.experts" in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue if name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue # Remapping the name of FP8 kv-scale. if name.endswith("kv_scale"): remapped_kv_scale_name = name.replace( ".kv_scale", ".attn.kv_scale") if remapped_kv_scale_name not in params_dict: logger.warning_once( "Found kv scale in the checkpoint (e.g. %s), but not found the expected name in the model (e.g. %s). kv-scale is not loaded.", # noqa: E501 name, remapped_kv_scale_name, ) continue else: name = remapped_kv_scale_name param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class OlmoeForCausalLM(nn.Module, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.model = OlmoeModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights) def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return self.model.get_expert_mapping()